Kinetic and Product Studies, and Isotope Effects in the Oxidation of Secondary Alcohols.*

$$
\begin{aligned}
& \text { By D. G. Hoare and W. A. Waters. } \\
& \text { Cobalt perchlorate concurrently oxidises secondary alcohols by two } \\
& \text { routes, } \\
& \text { RCOR' } \stackrel{a}{\text { RR'CH•OH } \xrightarrow{b}} \mathrm{R}^{\prime} \mathrm{CHO}+\mathrm{R} \text {. } \\
& \text { the ease of elimination of an alkyl group other than methyl being comparable } \\
& \text { or greater than the ease of oxidation by route }(a) \text {. With alcohols } \mathrm{RR} \mathrm{C}^{\prime} \mathrm{CD} \cdot \mathrm{OH} \\
& \text { both product studies and rate measurements reveal that these oxidations } \\
& \text { exhibit kinetic isotope effects, but concordance between the two sets of } \\
& \text { measurements is not clearly apparent. Suggestions are advanced concerning } \\
& \text { the reaction mechanism. }
\end{aligned}
$$

Extension of Part IV ${ }^{\mathbf{1}}$ to product and kinetic studies of the oxidations of a number of primary and secondary alcohols, including three α-deuterated alcohols, by cobaltic perchlorate is reported below. The product studies are consistent with the simple reaction mechanisms of Parts I^{2} and IV, ${ }^{1}$ but the kinetic studies show some rather unexpected features concerning which tentative suggestions only can be made.

Product Studies.-Table 1 shows that aldehydes are major products when secondary alcohols are oxidised by a small proportion of cobaltic perchlorate. From these results it is possible to calculate the relative rates of oxidation by the two competitive routes, to yield aldehydes or ketones.

* Presented at the XIXth Congress of I.U.P.A.C., London, 1963.
${ }^{1}$ Preceding Paper.
${ }^{2}$ Hoare and Waters, $J ., 1962,965$.

Taking, from Part IV, the relative elimination rates $E t: \operatorname{Pr}^{\mathrm{n}}: \operatorname{Pr}^{\mathrm{i}}=100: 34: 2300$, the oxidation of the n-propylcarbinol ($\mathrm{CHMePr}^{\mathrm{n}} \cdot \mathrm{OH}$) gives $H=36 \pm 3$, that of the isopropyl-carbinol (CHMePri. OH) gives $H=39 \pm \mathbf{1 6}$ and that for diethylcarbinol $\left(\mathrm{CHEt}_{2} \cdot \mathrm{OH}\right.$), again in $1 \cdot 57 \mathrm{~m}$-perchloric acid, gives $H=41 \pm 8$, note being taken that in

Table 1.

Product yields from oxidations of alcohols.
(a) $\left[\mathrm{HClO}_{4}\right]=1.57 \mathrm{M}$; initial $[\mathrm{CoHI}]$ ca. 0.03 M ; temp. 15°.

Alcohol	[Alcohol], m	Product ratios	Notes
RCHMe ${ }^{\text {OH }}$		MeCHO : RCOMe	
$\mathrm{Pr}^{2} \mathrm{CHMe} \cdot \mathrm{OH}$	0.54	49:51 ± 5	in $50 \% \mathrm{MeCN}$
	$0 \cdot 28$	98.3:1.7 ${ }^{\text {士 }} 1.2$	in 25 and in 50\%

(b) Oxidations of $\mathrm{Et}_{2} \mathrm{CH} \cdot \mathrm{OH}$ and $\mathrm{Et}_{2} \mathrm{CD} \cdot \mathrm{OH}$ in $50 \% \mathrm{MeCN}$; initial [alcohol] $=0.28 \mathrm{~m}$; initial [$\mathrm{Co}^{\mathrm{III}}$] ca 0.03 m ; temp. 15°.

Acidity	Product ratios	Overall yield	
[HClO_{4}], m	EtCHO : $\mathrm{Et}_{2} \mathrm{CO}$	\%	Notes
2.98	98.9 : $1 \cdot 1$	52	
1.57	82.9 : 17.1 ± 4	81	3 experiments
1.57	$93 \cdot 6: 6.4 \pm 0.4$	-	$\mathrm{Et}_{2} \mathrm{CD} \cdot \mathrm{OH}$ used
1.05	71.9 : 28.1	75	
1.05	90-8: 9 -2	61	1-2m-acrylamide added

[^0]this oxidation the elimination of either ethyl group would leave EtCHO. For the deuterated alcohol, the same statistical correction being used, one gets $D=13.7$ and therefrom a product kinetic isotope effect $k_{\mathrm{H}} / k_{\mathrm{D}}=3 \pm 0.5$.

However, with diethylcarbinol the product ratio $\mathrm{EtCHO}: \mathrm{Et}_{2} \mathrm{CO}$ is acid-dependent. The addition of acrylamide reduces the yield of diethyl ketone without affecting the yield of acetaldehyde, as would be expected if there was a carbon radical as a precursor of diethyl ketone [i.e., path (i) and not path (ii)], but not of acetaldehyde (compare Part I).
(I)

(2)

Again, our data on cyclohexanol oxidation (Table 2) suggest that there may be more $\mathrm{C}-\mathrm{C}$ cleavage with the α-deuterated alcohol $\left(k_{\mathrm{H}} / k_{\mathrm{D}}\right.$ about $\left.1 \cdot 3\right)$, that this is not noticeably changed when the solvent is 50% aqueous methyl cyanide, but that formation of cyclohexanone is almost eliminated when acrylamide has been added to trap the intermediate carbon radical from a reaction (l).

The inferences from these product studies are (a) that the elimination of an alkyl radical and the elimination of hydrogen are different, though concurrent reaction processes, and (b) that the rate of oxidation of a secondary alcohol to a ketone,

$$
\mathrm{R}_{2} \mathrm{CH} \cdot \mathrm{OH}+2 \mathrm{Co}^{\mathrm{III}} \longrightarrow \mathrm{R}_{2} \mathrm{CO}+2 \mathrm{Co}^{\mathrm{II}}+2 \mathrm{H}^{+}
$$

is comparable to the rate of oxidation of a tertiary alcohol containing alkyl group other than methyl.

Kinetic Studies.-Table 3 gives our measurements of the rate constants for $-\mathrm{d}\left[\mathrm{Co}^{\mathrm{III}]} / \mathrm{d} t\right.$ for a number of primary and secondary alcohols in various methyl cyanidewater mixtures at 15° and Table 4 gives data from which activation energies and entropies
have been calculated. Table 5 gives comparative rates extrapolated to aqueous solution by means of the empirical equation $k_{\text {solv. }}=k_{\text {water }} \exp (M x)$ of Part IV together with values of the constant M.

For diethylcarbinol, the isopropyl-carbinol, cyclohexanol, and their α-deuterated analogues values of the kinetic isotope effects are set out in Table 6.

Table 2.
Oxidations of cyclohexanol.

Conditions	Alcohol (M)	$\begin{gathered} 10^{9} \times\left[\mathrm{Co}^{\mathrm{III}}\right] \\ \text { consumed } \end{gathered}$	$10^{6} \times$ [ketone] formed	Yield of ketone (averages) (\%)	
a	$0 \cdot 10$	$23 \cdot 4$	$8 \cdot 9$	76	
a	$0 \cdot 11$	$23 \cdot 4$	$7 \cdot 3$	63	
a	$0 \cdot 15$	$24 \cdot 3$	$8 \cdot 2$	68	
a	$0 \cdot 17$	$21 \cdot 3$	$8 \cdot 0$	75	
a	$0 \cdot 20$	$24 \cdot 3$	$7 \cdot 9$	65	
a	$0 \cdot 24$	$15 \cdot 7$	$6 \cdot 0$	77	
a	$0 \cdot 26$	$23 \cdot 4$	$9 \cdot 4$	80	72 ± 8
a, b	$0 \cdot 17$	19.2	$1 \cdot 3$	14	
c	$0 \cdot 17$	$23 \cdot 4$	$9 \cdot 7$	82	
c	0.24	$15 \cdot 7$	6.0	77	79 ± 3
Deuteroalcohol					
a	$0 \cdot 17$	$15 \cdot 7$	$4 \cdot 0$	51	
a	$0 \cdot 19$	$23 \cdot 4$	$7 \cdot 2$	62	57 ± 6
c	0-19	23.4	$7 \cdot 0$	60	
c	$0 \cdot 27$	$15 \cdot 7$	$4 \cdot 4$	56	58 ± 3

Table 6 shows that, for cobaltic perchlorate solutions of constant acidity the kinetic isotope effects, which in water differ for each alcohol, diminish on the addition of methyl cyanide as the co-solvent and vanish in about 60% methyl cyanide. However, for cyclohexanol $k_{\mathrm{H}} / k_{\mathrm{D}}$ is not noticeably temperature-dependent.

To reconcile these values with the product data of Table 1 is a theoretical problem. Firstly, $-\mathrm{d}\left[\mathrm{Co}^{[1 I}\right] / \mathrm{d} t$ for diethyl ketone has scarecely any kinetic isotope effect, but the product ratio shows that elimination of hydrogen from $\mathrm{Et}_{2} \mathrm{CH} \cdot \mathrm{OH}$ is 3 times as easy as that of deuterium from $\mathrm{Et}_{2} \mathrm{CD} \cdot \mathrm{OH}$. Even granted that only 17% of the measured oxidation involves the breaking of an $\alpha-\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{D}$ bond then, assuming $k_{\mathrm{H}} / k_{\mathrm{D}}=1$ for alkyl-radical elimination, the kinetic isotope effect, measured from $-\mathrm{d}\left[\mathrm{Co}{ }^{[1 I I}\right] / \mathrm{d} t$ should be $1 \cdot 13 \pm 0.01$, which is above our limits of experimental error. Secondly the isopropylcarbinol shows, for $-\mathrm{d}\left[\mathrm{Co}^{\mathrm{II}}\right] / \mathrm{d} t$, a kinetic isotope effect of quite 1.3 in water and yet 98% of its oxidation is to acetaldehyde in which the $\alpha-\mathrm{C}-\mathrm{H}$ is not broken. Admittedly our product studies have been conducted at higher [Alcohol]: [Co ${ }^{\mathrm{III}]}$ ratios than our kinetic measurements, but even with the latter the ratios have been far too high for our rate data to be influenced significantly by secondary reactions.

It is therefore necessary to consider closely the mechanistic implications of measure-
 the reaction scheme $\mathrm{ROH}+\mathrm{Co}^{\mathrm{III}} \xlongequal[k_{-1}]{k_{1}}\left(\mathrm{ROH}, \mathrm{Co}^{\mathrm{III}}\right) \xrightarrow{k_{2}}$ Products, suggesting that the pre-equilibrium constant $K\left(=k_{1} / k_{-1}\right)$ was small and $k_{1} \gg k_{2}$ since the reactions had simple second-order and not Michaelis-Menten kinetics. However, second-order kinetics would also be found if $k_{1}<k_{2}$ but in this case only a trivial kinetic isotope effect would be observed with secondary alcohols and the M values for the solvent effect should be almost identical for $\mathrm{R}_{2} \mathrm{CH} \cdot \mathrm{OH}$ and $\mathrm{R}_{2} \mathrm{CD} \cdot \mathrm{OH}$.

Table 3.

Rate constants for oxidations of primary and secondary alcohols.
$\left\{-\mathrm{d}\left[\mathrm{CoIII}^{\mathrm{II}}\right] / \mathrm{d} t=k[\mathrm{CoIII}][\mathrm{ROH}] ; k\right.$ in $\left.1 . \mathrm{mole}^{-1} \mathrm{sec}^{-1}\right\} . \quad\left[\mathrm{HClO}_{4}\right]=1.57 \mathrm{M} ;$ initial $\left[\mathrm{Co}^{\mathrm{III}}\right] \quad c a$. 0.002 m ; temp. 15°. The percentage of methyl cyanide in the solvent is given in brackets after the rate constant.

Section (a)

The calculated rates for mixed solvents correspond to the equation

$$
k_{\text {Bolv. }}=k_{\text {water }} \exp (M x) \text { of Part IV. }
$$

Our product studies indicated that the reaction complex can break down by concurrent routes (a) and (b)

Table 4.
Temperature-dependence of oxidation rates.
$\left[\mathrm{HClO}_{4}\right]=1.57 \mathrm{M}$; initial $[\mathrm{CoIII}] c a .0 .002 \mathrm{M}$.

Cyclohexanol (in water)$10^{2} \times$ molarity		$5{ }^{\circ}$	10°	15°	20°	25°
		$9 \cdot 4$	-	$6 \cdot 26$	$6 \cdot 26$	$6 \cdot 26$
$10^{3} k\left(1 . \mathrm{mole}^{-1} \mathrm{sec}^{-1}\right.$)	6.83	$19 \cdot 4{ }^{\text {a }}$	$49 \cdot 7$	130	311
1-Deuterocyclohexanol (in water)			10°	15°	20°	25°
$10^{2} \times$ molarity			-	$4 \cdot 85$	-	$7 \cdot 28$
$10^{3} k\left(1 . \mathrm{mole}^{-1} \mathrm{sec}^{-1}\right.$)			$11.0{ }^{\text {a }}$	$26 \cdot 8$	-	173
$k_{\text {E }} / k_{\text {D }}$			1.76	1.85	-	1.80
Diethylcarbinol ($1 \cdot 6 \%$ of MeCN)$10^{\mathbf{2}} \times$ molarity $\ldots \ldots \ldots$.		5°	10°	15°	20°	25°
		2.7	$2 \cdot 7$	$2 \cdot 82$	$2 \cdot 7$	$2 \cdot 7$
$10^{3} k\left(1 . \mathrm{mole}^{-1} \mathrm{sec}^{-1}\right.$)		16.0	$43 \cdot 8$	113	280	634
Isopropyl alcohol (in water)		5°	10°	15°	20°	25°
$10^{2} \times$ molarity $\ldots \ldots$.		4.92	-		4.92	$4 \cdot 92$
$10^{3} k\left(1 . \mathrm{mole}^{-1} \mathrm{sec} .^{-1}\right)$		$5 \cdot 1$	11.8	37	81	181
t-Butyl alcohol (in water)			10°	15°	20°	25°
$10^{2} \times$ molarity				$64 \cdot 8$	$48 \cdot 3$	$48 \cdot 3$
$10^{\mathbf{3}} k\left(1 . \mathrm{mole}^{-1} \mathrm{sec} .^{-1}\right)$			$0 \cdot 681{ }^{\text {b }}$	$2 \cdot 16$	$5 \cdot 27$	$13 \cdot 2$
Hence: Cyclohexanol	Diethylca	nol	Isopropy	lcohol	t-Buty	hol
E, $31.5 \mathrm{kcal} . / \mathrm{mole}$	$E, 29 \cdot 8 \mathrm{kc}$	/mole	$E, 29 \cdot 6$./mole	E, 32.1	/mole
$\Delta S \ddagger,+43 \cdot 0$ e.u.	$\Delta S \ddagger+38$		$\Delta S \ddagger,+3$	e.u.	$\Delta S \ddagger$	e.u.

a, Data from Part I. b, Interpolated from data in Part I.

Table 5.
Rate constants for oxidations of primary and secondary alcohols.
$\left\{-\mathrm{d}\left[\mathrm{Co}^{\mathrm{III}}\right] / \mathrm{d} t=k[\mathrm{CoHI}][\mathrm{Alcohol}]\right\} . \quad\left[\mathrm{HClO}_{4}\right]=1.57 \mathrm{~m} ; \quad$ initial $\quad\left[\mathrm{Co}^{\mathrm{III}}\right] \quad$ ca. $\quad 0.002 \mathrm{M} ; \quad$ temp. $\quad 15^{\circ}$. k_{0} values for water are calculated from $k_{\text {moln. }}=k_{\text {water }} \exp (M x)$.

Alcohol	$10 k_{0}$ (1. mole ${ }^{-1} \mathrm{sec}^{-1}$)	M	Alcohol	$10 k_{0}\left(1 . \mathrm{mole}^{-1} \mathrm{sec} .^{-1}\right)$	M
MeOH	$1 \cdot 18$	-	$\mathrm{CHMe}_{2} \cdot \mathrm{OH}$	0.37	
EtOH	$2 \cdot 86$	$3 \cdot 7$	CHMeEt $\cdot \mathrm{OH}$	0.635	$4 \cdot 2$
$\mathrm{Pr}^{\text {a }} \mathrm{OH}$	$2 \cdot 89$	$3 \cdot 2$	CHMePr ${ }^{\text {r }}$ OH	$0 \cdot 631$	$4 \cdot 3$
$\mathrm{Pr}^{\text {i }} \mathrm{OH}$	$0 \cdot 37$	-			
$\mathrm{CH}_{2} \mathrm{Pr}^{1} \cdot \mathrm{OH}$	$3 \cdot 37$	$1 \cdot 54$	CDMePri. ${ }^{\text {OH }}$	2.51	$2 \cdot 10$
$\mathrm{CHEt}_{2} \cdot \mathrm{OH}$	1.06	$3 \cdot 7$	$\mathrm{CDEt}_{2} \cdot \mathrm{OH}$........	1.05	$3 \cdot 6$
Cyclohexanol	$0 \cdot 497$	$4 \cdot 9$	[1-D]cyclohexanol	$0 \cdot 268$	$5 \cdot 6$
$\mathrm{Me}_{3} \mathrm{C} \cdot \mathrm{OH}{ }^{*}$	0.0216	6	$\mathrm{CMe}_{2} \mathrm{Et} \cdot \mathrm{OH}$	$0 \cdot 50$	$3 \cdot 8$

Table 6.
Kinetic isotope effects ($k_{\mathrm{H}} / k_{\mathrm{D}}$) in methyl cyanide-water mixtures (at 15°).

and evidently the ratio $k_{a}: k_{b}$ is affected by (i) the acidity and (ii) the solvent environment. This is rational since both these factors can influence the reaction complex, which has 5 other ligand groups attached to the cobalt. According to this concurrent reaction theory the overall kinetic isotope effect, measured by - $\mathrm{d}\left[\mathrm{Co}^{\mathrm{III}}\right] / \mathrm{d} t$ should be much less than that for the route (a) alone, since it is assumed to be unity for the $\mathrm{Co}^{-} \mathrm{O}$ bond fission (b). Another possibility (suggested to us by Dr. J. S. Littler) is that the known fast reaction

$$
\text { (3) } \mathrm{R}_{2} \mathrm{CHO} \cdot+\mathrm{HCR}_{2} \cdot \mathrm{OH} \longrightarrow \mathrm{R}_{2} \mathrm{CH} \cdot \mathrm{OH}+\cdot \mathrm{CR}_{2} \cdot \mathrm{OH}
$$

competes, in reaction (b) above, with the elimination of an alkyl group
(4)
$\mathrm{R}_{2} \mathrm{CH} \cdot \mathrm{O} \longrightarrow \mathrm{R} \cdot+\mathrm{RCH}=\mathrm{O}$

In this case the production of ketone could involve both product and kinetic isotope effects (route a), or a product isotope effect without a kinetic isotope effect (route b, reaction 3). This scheme affords the simplest explanation of our findings concerning the oxidation of diethylcarbinol and cyclohexanol. However, our findings concerning the isopropyl-carbinol ($\mathrm{CHMePr}{ }^{2} \cdot \mathrm{OH}$) cannot be explained unless we deduce that $\mathrm{Co}-\mathrm{O}$ fission (b), followed by reaction 4, is the predominent reaction path in this case, and that the $\mathrm{Co}^{-}-\mathrm{O}$ fission (b) has a kinetic isotope effect $k_{\mathrm{H}} / k_{\mathrm{D}} \mathbf{l} \cdot 3$; however, the latter deduction is inconsistent with the data for diethylcarbinol. Thus it appears that we must seek for explanations in differences in energy levels of the complexes (I) and (II).

Now, the reaction process involves the abstraction of one electron from the alcohol ligand by pairing with a d electron of the $\mathrm{Co}^{\mathrm{III}}$ ion, which must be in the high-spin form so that a vacant d orbital is available (see Part I). As our diagrams indicate the spatial distribution of this d orbital overlaps the whole of the $\mathrm{CH}(\mathrm{OH})$ or $\mathrm{CD}(\mathrm{OH})$ groups of the alcohols so that there is resonance interaction with the electrons of the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{O}$ bonds, both of which must therefore be involved when the complexes decompose. Thus even for eventual fission to a radical, $\mathrm{RR}^{\prime} \mathrm{CH} \cdot \mathrm{O}^{\circ}$, there may be a kinetic isotope effect similar to secondary isotope effects found for disruption of $\mathrm{X}-\mathrm{Y}$ in compounds $\mathrm{H}-\mathrm{C}-\mathrm{X}-\mathrm{Y}$ and $\mathrm{D}-\mathrm{C}-\mathrm{X}-\mathrm{Y}$. In this way one could account for the kinetic isotope effect with the isopropyl-carbinol ($\mathrm{CHMePr}{ }^{\mathrm{i}} \cdot \mathrm{OH}$) but not for the absence of a kinetic isotope effect with diethylcarbinol. These are however conformations, e.g., (III), in which participation of $\mathrm{C}-\mathrm{H}$ is negligible and with which kinetic isotope effects $k_{\mathrm{H}} / k_{\mathrm{D}}$ should be practically unity.

Conformation (III) indicates that the ease of oxidation of secondary and tertiary alcohols may also be related to the ease of fission of C-alkyl bonds, and in this way one would correlate the product and kinetic studies of Part IV. This approach, however, does not account for certain mechanistic distinctions between aldehyde and ketone formation upon which we have already commented.

Experimental

Materials.-3-Deutero-3-pentanol was prepared by reducing diethyl ketone (8.6 g .) in ether with lithium aluminium deuteride (1.0 g .; Metal Hydrides Inc., 97% deuterium). The reaction product contained unchanged ketone, the bulk of which was removed by means of the Girard-p reagent; further purification was then effected by gas chromatography using 30\% Apiezon L on Embacil. The yield was 1 g . The infrared spectrum showed absence of $\mathrm{C}=\mathrm{O}$. Impurities in the LiAlD_{4} would not have yielded an alcohol.

The other deuterated alcohols were prepared similarly. The Girard-P reagent was used for purification of all the higher alcohols before their final fractionation. The analytical and kinetic procedures were those of Part IV.

One of us (D. G. H.) thanks the D.S.I.R. for a research studentship.

[^0]: Products were identified by their R_{F} values on chromatography; EtCHO was isolated as its dinitrophenylhydrazone. Yields are calculated for the initial reaction, Alcohol $+2 \mathrm{Co}^{\mathrm{III}} \longrightarrow$ carbonyl compounds, and would only be 100% if secondary oxidation did not occur.

